FlexibleSUSY is hosted by Hepforge, IPPP Durham
SLHA input parameters

FlexibleSUSY configuration block (FlexibleSUSY)

__Block name__: `FlexibleSUSY`

__Default values__:

~~~~~~~~~~~~~~~~~~~~~~~{.txt} Block FlexibleSUSY 0 1.0e-04 # precision goal 1 0 # max. iterations (0 = automatic) 2 0 # algorithm (0 = all, 1 = two_scale, 2 = semi_analytic) 3 0 # calculate SM pole masses 4 2 # pole mass loop order 5 2 # EWSB loop order 6 4 # beta-functions loop order 7 2 # threshold corrections loop order 8 1 # Higgs 2-loop corrections O(alpha_t alpha_s) 9 1 # Higgs 2-loop corrections O(alpha_b alpha_s) 10 1 # Higgs 2-loop corrections O((alpha_t + alpha_b)^2) 11 1 # Higgs 2-loop corrections O(alpha_tau^2) 12 0 # force output 13 1 # Top pole mass QCD corrections (0 = 1L, 1 = 2L, 2 = 3L) 14 1.0e-11 # beta-function zero threshold 15 0 # calculate observables (a_muon, effective couplings) 16 0 # force positive majorana masses 17 0 # pole mass scale 18 0 # pole mass scale in the EFT (0 = min(SUSY scale, Mt)) 19 0 # EFT matching scale (0 = SUSY scale) 20 2 # EFT loop order for upwards matching (SM -> BSM) 21 1 # EFT loop order for downwards matching (BSM -> SM) 22 0 # EFT index of SM-like Higgs in the BSM model (0 = lightest Higgs) 23 1 # calculate BSM pole masses 24 123111321 # individual threshold correction loop orders 25 0 # ren. scheme for Higgs 3L corrections (0 = DR, 1 = MDR) 26 1 # Higgs 3-loop corrections O(alpha_t alpha_s^2) 27 1 # Higgs 3-loop corrections O(alpha_b alpha_s^2) 28 1 # Higgs 3-loop corrections O(alpha_t^2 alpha_s) 29 1 # Higgs 3-loop corrections O(alpha_t^3) 30 1 # Higgs 4-loop corrections O(alpha_t alpha_s^3) ~~~~~~~~~~~~~~~~~~~~~~~

__Description__:

The `FlexibleSUSY` block contains fields to configure the spectrum calculation at run-time. For example, in the `FlexibleSUSY` block the renormalization group running precsision, the beta function loop order or the loop order of the pole mass calculation can be selected.

index | description | possible values | default value -----:|----------------------------------------|---------------------------------------------|---------------- 0 | precision goal | any positive double | 1.0e-4 1 | max. number of iterations | any positive double | 0 (= automatic) 2 | BC solver | 0 (all), 1 (two-scale) or 2 (semi-analytic) | 0 (= all) 3 | calculate SM pole masses | 0 (no) or 1 (yes) | 0 (= no) 4 | pole mass loop order | 0, 1, 2 | 2 (= 2-loop) 5 | EWSB loop order | 0, 1, 2 | 2 (= 2-loop) 6 | beta function loop order | 0, 1, 2, 3, 4 | 4 (= 4-loop) 7 | threshold corrections loop order | 0, 1, 2 | 2 (= 2-loop) 8 | higgs 2-loop correction O(at as) | 0, 1 | 1 (= enabled) 9 | higgs 2-loop correction O(ab as) | 0, 1 | 1 (= enabled) 10 | higgs 2-loop correction O(at at) | 0, 1 | 1 (= enabled) 11 | higgs 2-loop correction O(atau atau) | 0, 1 | 1 (= enabled) 12 | force output | 0 (no) or 1 (yes) | 0 (= no) 13 | top quark pole QCD corrections | 0 (1L), 1 (2L), 2 (3L) | 1 (= 2L QCD) 14 | beta function zero threshold | any positive double | 1.0e-11 15 | calculate observables | 0 (no) or 1 (yes) | 0 (= no) 16 | force positive Majorana masses | 0 (no) or 1 (yes) | 0 (= no) 17 | pole mass scale | any positive double | 0 (= SUSY scale) 18 | EFT pole mass scale | any positive double | 0 (= minimum of {Mt, SUSY scale}) 19 | EFT matching scale | any positive double | 0 (= SUSY scale) 20 | EFT loop order for upwards matching | 0, 1, 2 | 2 (= 2-loop) 21 | EFT loop order for downwards matching | 0, 1 | 1 (= 1-loop) 22 | EFT Higgs index | any integer >= 0 | 0 (= lightest) 23 | calculate pole masses of BSM particles | 0 (no) or 1 (yes) | 1 (= yes) 24 | individual threshold corrections | positive integer | 123111321 25 | ren. scheme for higgs 3L corrections | 0 (DR-bar) or 1 (MDR-bar) | 0 (= DR-bar) 26 | higgs 3-loop correction O(at as^2) | 0, 1 | 1 (= enabled) 27 | higgs 3-loop correction O(ab as^2) | 0, 1 | 1 (= enabled) 28 | higgs 3-loop correction O(at^2 as) | 0, 1 | 1 (= enabled) 29 | higgs 3-loop correction O(at^3) | 0, 1 | 1 (= enabled) 30 | higgs 4-loop correction O(at as^3) | 0, 1 | 1 (= enabled)

### Precision goal (`FlexibleSUSY[0]`) ###

FlexibleSUSY solves the given boundary value problem (BVP) by running all model parameters to each scale and imposing the corresponding boundary conditions until a convergent solution has been found or the maximum number of iterations has been reached. In `FlexibleSUSY[0]`, precision goal of the BVP solver can be specified. The precision goal determines

  • the precision of the numerical solution of the RGEs,
  • the precision of the numerical solution of the EWSB equations and
  • to test whether the BVP solver has found a convergent solution.

### Maximum number of iterations (`FlexibleSUSY[1]`) ###

FlexibleSUSY solves the given boundary value problem (BVP) by running to each scale and imposing the corresponding boundary conditions until a convergent solution has been found or the maximum number of iterations, $N_{\text{max.it.}}$, has been reached. In `FlexibleSUSY[1]`, the maximum number of iterations $N_{\text{max.it.}}$ used to solve the BVP can be specified. If $N_{\text{max.it.}}$ is set to `0`, the maximum number of iterations is set to

\[N_{\text{max.it.}} = -10 \log_{10}p,\]

where $p$ is the precision goal specified in `FlexibleSUSY[0]`.

### BVP solver (`FlexibleSUSY[2]`) ###

Choses the boundary value problem (BVP) solver: 0 = all that are enabled (starting with the two-scale solver, if present), 1 = two-scale solver (if present), 2 = semi-analytic solver (if present).

### Calculate pole masses of Standard Model particles (`FlexibleSUSY[3]`) ###

Calculate pole masses of Standard Model particles: 0 = do not calculate Standard Model pole masses, 1 = calculate the Standard Model pole masses.

### Pole mass loop order (`FlexibleSUSY[4]`) ###

Maximum pole mass loop order. 0 = tree-level, 1 = 1-loop, 2 = 2-loop (if available), 3 = 3-loop (if available).

### EWSB loop order (`FlexibleSUSY[5]`) ###

Maximum loop order of the electroweak symmetry breaking (EWSB) equations. 0 = tree-level, 1 = 1-loop, 2 = 2-loop (if available), 3 = 3-loop (if available).

Note:
The EWSB loop order should always be set to the same value as the pole mass loop order!

### beta-function loop order (`FlexibleSUSY[6]`) ###

Loop order of the renormalization group running. 0 = no running, 1 = 1-loop running, 2 = 2-loop running, 3 = 3-loop running (if available).

### Threshold correction loop order (`FlexibleSUSY[7]`) ###

Using the flag `FlexibleSUSY[7]` the "global" loop order of the threshold corrections of the SM to the full BSM model can be selected. The threshold corrections affect the determination of the running BSM model parameters $\alpha_{\text{em}}$, $\alpha_s$, $\sin(\theta_W)$, $y_e$, $y_\mu$, $y_\tau$, $y_b$, $y_t$, $v$ at the low-energy scale $Q_{\text{low}}$ in the $\overline{\text{MS}}$ or $\overline{\text{DR}}$ scheme.

Note:
The individual loop orders of the threshold corrections can be specified using `FlexibleSUSY[24]`
  • $\alpha_{\text{em}}(Q_{\text{low}})$: If the threshold correction loop order is set to `0`, $\alpha_{\text{em}}(Q_{\text{low}})$ is set to $\alpha_{\text{em}}^{\text{SM}(5)}(Q_{\text{low}})$ in the Standard Model with 5 active quark flavours. If the threshold correction loop order is set to `1`, $\alpha_{\text{em}}(Q_{\text{low}})$ is calculated from $\alpha_{\text{em}}^{\text{SM}(5)}(Q_{\text{low}})$ using the full 1-loop threshold correction.
  • $\alpha_s(Q_{\text{low}})$: If the threshold correction loop order is set to `0`, $\alpha_s(Q_{\text{low}})$ is set to $\alpha_s^{\text{SM}(5)}(Q_{\text{low}})$ in the Standard Model with 5 active quark flavours. If the threshold correction loop order is set to `1`, $\alpha_s(Q_{\text{low}})$ is calculated from $\alpha_s^{\text{SM}(5)}(Q_{\text{low}})$ using the full 1-loop threshold correction.
  • $\sin(\theta_W)(Q_{\text{low}})$: If the threshold correction loop order is set to `0`, the weak mixing angle is calculated from either (i) $\{G_F,M_Z\}$ or (ii) $\{M_W,M_Z\}$ (depending on the choice of the weak mixing angle calculation in the FlexibleSUSY model file, see FlexibleSUSY model file) using the corresponding tree-level relation.

If the threshold correction loop order is set to `1`, the the weak mixing angle is calculated at the 1-loop level, taking into account

  • (i): complete 1-loop corrections to the W and Z self-energies $\Pi_{ZZ}^T, \Pi_{ZZ}^T$ as well as 1-loop corrections to $\Delta r$, which includes vertex and box contributions $\delta_{\text{VG}}$ from neutralinos, charginos, selectrons and smuons.
  • (ii): complete 1-loop corrections to the W and Z self-energies $\Pi_{ZZ}^T, \Pi_{ZZ}^T$.

If the threshold correction loop order is set to `2`, the weak mixing angle is calculated at the 1-loop level, as above, and the following 2-loop correction is taken into account:

  • (i): 2-loop corrections to $\Delta r$ of the order $O(\alpha_{\text{em}} \alpha_s + y_t^4)$ from [arxiv:hep-ph/9606211, Eqs. (C.5), (C.6)].
  • $y_e(Q_{\text{low}})$, $y_\mu(Q_{\text{low}})$, $y_\tau(Q_{\text{low}})$: If the threshold correction loop order is set to `0`, the lepton Yukawa couplings $y_e(Q_{\text{low}})$, $y_\mu(Q_{\text{low}})$, $y_\tau(Q_{\text{low}})$ are calculated from the lepton pole masses in the Standard Model with 5 active quark flavours using the tree-level relation.

If the threshold correction loop order is set to `1`, $y_e(Q_{\text{low}})$, $y_\mu(Q_{\text{low}})$, $y_\tau(Q_{\text{low}})$ are calculated at the scale $Q_{\text{low}}$ at the 1-loop level from the running lepton masses in Standard Model with 5 active quark flavours.

  • $y_b(Q_{\text{low}})$: If the threshold correction loop order is set to `0`, the bottom Yukawa couplings $y_b(Q_{\text{low}})$ is calculated from the running bottom mass in the Standard Model with 5 active quark flavours, $m_b^{(5)}(Q_{\text{low}})$, using the tree-level relation.

If the threshold correction loop order is set to `1`, $y_b(Q_{\text{low}})$ is calculated at the scale $Q_{\text{low}}$ from $m_b^{(5)}(Q_{\text{low}})$ taking the complete 1-loop correction into account.

  • $y_t(Q_{\text{low}})$: If the threshold correction loop order is set to `0`, the running top Yukawa coupling $y_t(Q_{\text{low}})$ is calculated from the top pole mass, $M_t$, using the tree-level relation.

If the threshold correction loop order is set to `1`, the running $y_t(Q_{\text{low}})$ is calculated at the scale $Q_{\text{low}}$ from $M_t$ taking the complete 1-loop correction into account as

\begin{align*} m_t(Q) &= M_t + \text{Re\;}\Sigma_{t}^{S}(M_t) + M_t \left[ \text{Re\;}\Sigma_{t}^{L}(M_t) + \text{Re\;}\Sigma_{t}^{R}(M_t) + \Delta m_t^{(1),\text{QCD}} \right] , \end{align*}

where $\Sigma_{t}^{S}(p)$, $\Sigma_{t}^{L}(p)$, $\Sigma_{t}^{R}(p)$ denote the scalar, left- and right-handed parts of the top self-energy without the gluon contribution. The 1-loop SM-QCD contribution $m_t^{(1),\text{QCD}}$ reads in the $\overline{\text{DR}}$ scheme

\begin{align*} \Delta m_t^{(1),\text{QCD}} &= -\frac{g_3^2}{12 \pi^2} \left[5-3 \log\left(\frac{m_t^2}{Q^2}\right)\right], \end{align*}

and in the $\overline{\text{MS}}$ scheme

\begin{align*} \Delta m_t^{(1),\text{QCD}} &= -\frac{g_3^2}{12 \pi^2} \left[4-3 \log\left(\frac{m_t^2}{Q^2}\right)\right]. \end{align*}

If the threshold correction loop order is set to `2`, 2-loop SM-QCD corrections are taken into count as

\begin{align*} m_t(Q) &= M_t + \text{Re\;}\Sigma_{t}^{S}(M_t) + M_t \left[ \text{Re\;}\Sigma_{t}^{L}(M_t) + \text{Re\;}\Sigma_{t}^{R}(M_t) + \Delta m_t^{(1),\text{QCD}} + \Delta m_t^{(2),\text{QCD}} \right] , \end{align*}

where $\Delta m_t^{(2),\text{QCD}}$ reads in the $\overline{\text{DR}}$ scheme [arxiv:hep-ph/0210258]

\begin{align*} \Delta m_t^{(2),\text{QCD}} &= \left(\Delta m_t^{(1),\text{QCD}}\right)^2 - \frac{g_3^4}{4608 \pi^4} \Bigg[396 \log^2\left(\frac{m_t^2}{Q^2}\right)-1476 \log\left(\frac{m_t^2}{Q^2}\right) -48 \zeta(3)+2011+16 \pi^2 (1+\log 4)\Bigg] \,, \end{align*}

and in the $\overline{\text{MS}}$ scheme [arxiv:hep-ph/9803493]

\begin{align*} \Delta m_t^{(2),\text{QCD}} &= \left(\Delta m_t^{(1),\text{QCD}}\right)^2 - \frac{g_3^4}{4608 \pi^4} \Bigg[396 \log^2\left(\frac{m_t^2}{Q^2}\right) - 2028 \log\left(\frac{m_t^2}{Q^2}\right) - 48 \zeta(3) + 2821 + 16 \pi^2 (1+\log 4)\Bigg] \,. \end{align*}

If the threshold correction loop order is set to `3` in _non-SUSY_ models, the 3-loop SM-QCD corrections from Refs. [arxiv:hep-ph/9912391, arxiv:hep-ph/9911434] are taken into count as

\begin{align*} m_t(Q) &= M_t + \text{Re\;}\Sigma_{t}^{S}(M_t) + M_t \left[ \text{Re\;}\Sigma_{t}^{L}(M_t) + \text{Re\;}\Sigma_{t}^{R}(M_t) + \Delta m_t^{(1),\text{QCD}} + \Delta m_t^{(2),\text{QCD}} + \Delta m_t^{(3),\text{QCD}} \right] , \end{align*}

where $\Delta m_t^{(3),\text{QCD}}$ reads in the $\overline{\text{MS}}$ scheme

\begin{align*} \Delta m_t^{(3),\text{QCD}} = -\frac{g_3^6 \left\{2700 \left[-312 \zeta (3)+1645+8 \pi ^2 (1+\log (4))\right] \log \left(\frac{Q^2}{m^2}\right)+48600 \log ^3\left(\frac{Q^2}{m^2}\right)+714420 \log ^2\left(\frac{Q^2}{m^2}\right)-15 \left[69120 \text{Li}_4\left(\frac{1}{2}\right)+116496 \zeta(3)-94800 \zeta (5)-531197+2880 \log^4(2)\right] - 4 \pi^2 [129510 \zeta (3)-393101+240 \log(2) (697+24 \log(2))] + 10500 \pi ^4\right\}}{9953280 \pi^6} \end{align*}

Note:
The 1-, 2-, and 3-loop QCD corrections can be found in Mathematica form in `meta/TwoLoopQCD.m` and `meta/ThreeLoopQCD.m`.

### 2-loop Higgs pole mass contributions (`FlexibleSUSY[8-11]`) ###

Selects (on/off = 0/1) the individual 2-loop Higgs pole mass contributions (if available).

### Force output (`FlexibleSUSY[12]`) ###

If set to 1, an output is always printed, even if a problem has occurred during the calculation.

Note:
Be careful with this option! Check the problems and warnings that have occurred!

### Top pole mass loop order (`FlexibleSUSY[13]`) ###

Loop order of contributions to the top pole mass. 0 = full 1-loop, 1 = 2-loop QCD, 2 = 3-loop QCD.

Note:
The top pole mass is only calculated if `FlexibleSUSY[3] = 1`.

### Beta-function zero threshold (`FlexibleSUSY[14]`) ###

Below this threshold, beta-functions are treated as being exactly zero. Setting this threshold to a non-zero value can avoid numerical problems / non-convergence problems in models with complex parameters.

### Calculate observables (`FlexibleSUSY[15]`) ###

Enable/disable (1/0) the calculation of the observables specified in the FlexibleSUSY model file. See Observables for further details about how to select the calculation of observables in FlexibleSUSY.

### Force positive Majorana masses (`FlexibleSUSY[16]`) ###

If set to 1, the masses of Majorana fermions will always be positive. In this case, the corresponding mixing matrices may be complex.

Note:
Setting `FlexibleSUSY[6] = 1` violates the SLHA standard.

### Pole mass scale (`FlexibleSUSY[17]`) ###

Using `FlexibleSUSY[17]`, the renormalization scale at which the pole mass spectrum is calculated can be overwritten. By default the renormalization scale is the SUSY scale (`SUSYScale` variable in the model file). If `FlexibleSUSY[17]` is set to `0`, the value given by the `SUSYScale` variable is used. If `FlexibleSUSY[17]` is set to a non-zero value, then this value is used as renormalization scale.

### EFT pole mass scale (`FlexibleSUSY[18]`) ###

Note:
Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[18]`, the renormalization scale at which the Standard Model pole mass spectrum is calculated in the EFT can be overwritten. If unspecified or set to `0`, the minimum of the top pole mass and the `SUSYScale` is used.

### EFT matching scale (`FlexibleSUSY[19]`) ###

Note:
Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[19]`, the renormalization scale at which the full model is matched to the Standard Model can be overwritten. If unspecified or set to `0`, the `SUSYScale` is used.

### EFT upwards matching loop order (`FlexibleSUSY[20]`) ###

Note:
Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[20]`, the loop order for the matching of the Standard Model to the full BSM model can be selected ("upwards matching"). If unspecified, the loop order is set to `2`.

Note:
When `FlexibleSUSY[20] = 2` and `FlexibleSUSY[13] = 1`, then 2-loop top Yukawa coupling threshold corrections are additonally taken into account in the determination of running top Yukawa coupling of the full model at the matching scale, $y_t^{\text{model}}$. These 2-loop corrections arise when top pole masses of the Standard Model and the full model are set equal to determine $y_t^{\text{model}}$. These 2-loop corrections must be included in order to reproduce the results of the pure EFT approaches (FlexibleSUSY/HSSUSY or SUSYHD) with FlexibleEFTHiggs.

### EFT downwards matching loop order (`FlexibleSUSY[21]`) ###

Note:
Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[21]`, the loop order for the matching of the BSM model to the Standard Model can be selected ("downwards matching"). If unspecified, the loop order is set to `1`.

### EFT index of SM-like Higgs (`FlexibleSUSY[22]`) ###

Note:
Only used if `FlexibleEFTHiggs == True`

Using `FlexibleSUSY[22]`, the user can specify which Higgs in the BSM model should be interpreted to be the SM-like one. If unspecified, the index is set to `0`, i.e. the lightest Higgs eigenstate in the BSM model is interpreted as the SM-like Higgs.

### Calculate pole masses of BSM particles (`FlexibleSUSY[23]`) ###

Enable/disable (1/0) the calculation of the pole masses of non-Standard Model particles.

### Individual threshold corrections (`FlexibleSUSY[24]`) ###

The entry `FlexibleSUSY[24]` can be used for a fine-grained control to specify the loop orders of the low-energy threshold corrections of the SM(5) parameters to the parameters of the BSM model. The given number is composed of several digits, each one specifying a threshold correction loop order of a parameter. The following table shows which digit is associated with which parameter.

digit position $n$ | default value (prefactor of $10^n$) | parameter ----------------------:|-----------------------------------------|------------------------- 0 | 1 (1-loop) | $\alpha_{\text{em}}$ 1 | 2 (2-loop) | $\sin\theta_W$ 2 | 3 (3-loop) | $\alpha_{s}$ 3 | 1 (1-loop) | $m_Z$ 4 | 1 (1-loop) | $m_W$ 5 | 1 (1-loop) | $m_h$ 6 | 3 (3-loop) | $m_t$ 7 | 2 (2-loop) | $m_b$ 8 | 1 (1-loop) | $m_{\tau}$

Note:
Note, that the threshold correction loop order of a parameter is not higher than the "global" threshold correction loop order, specified by `FlexibleSUSY[7]`.

### 3-loop corrections to the Higgs pole mass (`FlexibleSUSY[25-29]`) ###

In the MSSM, the 3-loop corrections to the Higgs pole mass of the order $O(\alpha_t \alpha_s^2 + \alpha_b \alpha_s^2)$ [arxiv:hep-ph/1005.5709] can be taken into account. To include them, the variable `UseHiggs3LoopMSSM` must be set to `True` in the model file:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ UseHiggs3LoopMSSM = True; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note:
It is strongly recommended to also set `UseMSSMYukawa2Loop = True;` and `UseMSSM3LoopRGEs = True;` for consistency.

To enable the 3-loop corrections at run-time in general, set both `FlexibleSUSY[4]` and `FlexibleSUSY[5]` to `3`. To enable the specific $O(\alpha_t \alpha_s^2)$ correction at run-time, set the flag `FlexibleSUSY[26]` to `1`. To enable the 3-loop correction $O(\alpha_b \alpha_s^2)$ at run-time, set the flag `FlexibleSUSY[27]` to `1`.

The 3-loop corrections from [arxiv:hep-ph/1005.5709] can be calculated in the $\overline{DR}$ or $\overline{MDR}$ scheme. To use the $\overline{DR}$ scheme, set `FlexibleSUSY[25]` to `0`. To use the $\overline{MDR}$ scheme, set `FlexibleSUSY[25]` to `1`.

We recommend to set the following model file options to enable the 3-loop Higgs pole mass corrections in the MSSM:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ UseHiggs2LoopMSSM = True; (* enable 2-loop corrections *) EffectiveMu = \[Mu]; (* sign convention for MSSM mu parameter *) UseMSSM3LoopRGEs = True; (* enable 3-loop RGEs *) UseHiggs3LoopMSSM = True; (* enable 3-loop corrections *) UseMSSMYukawa2Loop = True; (* enable 2-loop SQCD corrections to yt and yb *) UseMSSMAlphaS2Loop = True; (* enable 2-loop SQCD corrections to alpha_s *) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To run FlexibleSUSY with the 3-loop corrections, we recommend the settings in the SLHA input:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Block FlexibleSUSY 4 3 # pole mass loop order 5 3 # EWSB loop order 6 3 # beta-functions loop order 7 2 # threshold corrections loop order 8 1 # Higgs 2-loop corrections O(alpha_t alpha_s) 9 1 # Higgs 2-loop corrections O(alpha_b alpha_s) 10 1 # Higgs 2-loop corrections O((alpha_t + alpha_b)^2) 11 1 # Higgs 2-loop corrections O(alpha_tau^2) 24 123111221 # individual threshold correction loop orders 25 0 # ren. scheme for Higgs 3L corrections (0 = DR, 1 = MDR) 26 1 # Higgs 3-loop corrections O(alpha_t alpha_s^2) 27 1 # Higgs 3-loop corrections O(alpha_b alpha_s^2) 28 1 # Higgs 3-loop corrections O(alpha_t^2 alpha_s) 29 1 # Higgs 3-loop corrections O(alpha_t^3) 30 1 # Higgs 4-loop corrections O(alpha_t alpha_s^3) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In FlexibleSUSY's Mathematica interface, the following settings should be used:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fsSettings -> { poleMassLoopOrder -> 3, (* FlexibleSUSY[4] *) ewsbLoopOrder -> 3, (* FlexibleSUSY[5] *) betaFunctionLoopOrder -> 3, (* FlexibleSUSY[6] *) thresholdCorrectionsLoopOrder -> 2,(* FlexibleSUSY[7] *) higgs2loopCorrectionAtAs -> 1, (* FlexibleSUSY[8] *) higgs2loopCorrectionAbAs -> 1, (* FlexibleSUSY[9] *) higgs2loopCorrectionAtAt -> 1, (* FlexibleSUSY[10] *) higgs2loopCorrectionAtauAtau -> 1, (* FlexibleSUSY[11] *) thresholdCorrections -> 123111221, (* FlexibleSUSY[24] *) higgs3loopCorrectionRenScheme -> 0,(* FlexibleSUSY[25] *) higgs3loopCorrectionAtAsAs -> 1, (* FlexibleSUSY[26] *) higgs3loopCorrectionAbAsAs -> 1, (* FlexibleSUSY[27] *) } ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note:
In [arxiv:1708.05720] the individual threshold corrections (`FlexibleSUSY[24]`, `thresholdCorrections`) were set to `123111121`, i.e. the 2-loop SQCD threshold corrections to $\alpha_s(M_Z)$ have not been taken into account for clarity, because they would correspond to a partial 4-loop contribution to the light CP-even Higgs pole mass.

Additional physical input parameters (FlexibleSUSYInput)

__Block name__: `FlexibleSUSYInput`

__Default values__:

~~~~~~~~~~~~~~~~~~~~~~~{.txt} Block FlexibleSUSYInput 0 0.00729735 # alpha_em(0) 1 125.09 # Mh pole ~~~~~~~~~~~~~~~~~~~~~~~

__Description__:

The `FlexibleSUSYInput` block contains fields for additional known physical input parameters, which are not contained in a SLHA-compliant `SMINPUTS` block.

index | description | possible values | default value -----:|--------------------------------------|------------------------------|---------------- 0 | alpha_em(0) in the Thompson limit | any positive double | 1./137.035999074 1 | SM Higgs pole mass | any positive double | 125.09

MODSEL block (MODSEL)

__Block name__: `MODSEL`

__Default values__:

~~~~~~~~~~~~~~~~~~~~~~~{.txt} Block MODSEL 6 0 # Quark/Lepton flavour violation 12 0 # running parameter output scale (GeV) ~~~~~~~~~~~~~~~~~~~~~~~

__Description__:

FlexibleSUSYInput supports the following fields of the `MODSEL` block, as defined in SLHA-2:

index | description | possible values | default value -----:|--------------------------------------|-----------------------------------------|---------------- 6 | Quark/Lepton flavour violation | 0 (no), 1 (quark), 2 (lepton), 3 (both) | 0 (= no flavour violation) 12 | Output scale for running parameters | any positive, non-zero double | 0 (= SUSYScale)

Output blocks

In FlexibleSUSY the user can define additional SLHA output blocks. Please refer to [output blocks](Output blocks) section for more information.